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Solution to Assignment 8

Supplementary Exercises

1. Use the Weierstrass M-test to study the uniform convergence of the series
∑∞

n=1

xn

n
for

x ∈ (0, b) where b > 0. The answer depends on the value of b.

Solution. This series converges uniformly on any interval of the form [0, b], b ∈ (0, 1)
as a direct application of the M -Test. It is not convergent at x = 1, hence it cannot be
uniformly convergent on [0, b] when b ≥ 1. We will see that this series has a closed form
given by − log(1− x).

2. Show that the series
∑∞

n=1

sinnx

np
defines a continuous function on R for p > 1.

Solution. By ∣∣∣∣sinnxnp

∣∣∣∣ ≤ 1

np

and
∑
n−p is convergent if p > 1 we conclude from M -Test that this series is uniformly

convergent on R. As uniform convergence preserves continuity, the limit
∑∞

n=1

sinnx

np
is a

continuous function.

3. Show that the infinite series
∑∞

j=1

cos 2jx

3j
is a continuous function on the real line. Is it

differentiable?

Solution. By ∣∣∣∣cos 2jx

3j

∣∣∣∣ ≤ 1

3j

and
∑

j 3−j < ∞, we conclude from M -Test that this series is uniformly convergent. By
Continuity Theorem 3.6’ we further deduce that it is continuous. In fact, this function has
continuous derivative given by

−
∞∑
j=1

(
2

3

)j

sin 2jx .

To see this just observe that
∑

j(2/3)j < ∞ and then appeal to Differentiation Theorem
3.8’.

4. Show that the sequence gn(x) =
∑n

j=1 e
−jx defines a smooth function on [1, ,∞). What

will happen if [1,∞) is replaced by [0,∞)?

Solution. By termwise differentiating this series k times we get the series

∞∑
j=1

(−1)kjke−jx .

To show that the series defines a smooth function on [1,∞) it suffices to show these derived
series are uniformly convergent and then apply Differentiation Theorem repeatedly. We
recall the inequality

ex ≥ xn

n!
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for all positive x and n. In particular, taking x to be jx we get

e−jx ≤ n!(jx)−n ≤ n!j−n ,

for x ∈ [1,∞). We choose n = k + 2 to get jke−jx ≤ (k + 2)!j−2. Since
∑

j j
−2 <∞, this

series converges uniformly on [1,∞).

When considering the series on [0,∞), we note that it is not convergent at x = 0, so not
even pointwise convergence, let alone uniform convergence.

Note: By slightly modifying the proof, this series is uniformly convergent on [b,∞) for
every b > 0 and hence smooth on (0,∞).

5. Suppose f is a nonzero function satisfying f(x+ y) = f(x)f(y) for all real numbers x and
y and is differentiable at x = 0. Show that it must be of the form eax for some number a.
Hint: Study the differential equation f satisfies.

Solution. Taking x = y = 0 in the defining relation of f we get f(0) = f(0)2, so
f(0) = 0 or f(0) = 1. We first exclude the case f(0) = 0. Indeed, from the relation
f(x + y) = f(x)f(y) one deduces f(x) = f(x/n)n. If f(0) = 0, as f ′(0) exists, one has
limh→0 f(h)/h = 0. For ε = 1, there exists some δ |f(h)| ≤ |h| for all |h| < δ. For any
x we can find a large n0 such that |x|/n0 < δ. Then |f(x)| = |f(x/n)|n ≤ (x/n)n for all
n ≥ n0. Letting n → ∞, we conclude f(x) = 0 for all x, contradicting the assumption
that f is non-zero. We have shown that f(0) = 1. Now,

f(x+ h)− f(x)

h
=
f(x)(f(h)− 1)

h
→ f(x)f ′(0) , as h→ 0 ,

which shows that f is differentiable everywhere with f ′(x) = f ′(0)f(x) . Setting a = f ′(0),
the function g(x) = f(x/a) satisfies g′(x) = a−1f ′(x/a) = a−1f ′(0)f(x/a) = g(x) and
g(0) = f(0) = 1. By the uniqueness of the exponential function we conclude that g(x) =
E(x), so f(x) = E(ax) .

6. (a) Show that

1 +
x

1!
+ · · ·+ xn

n!
≤ E(x) ≤ 1 +

x

1!
+ · · ·+ xn−1

(n− 1)!
+
eaxn

n!
, x ∈ [0, a] .

(b) Show that e is not a rational number. Suggestion: Deduce from (a) the inequality

0 < en!−
(

1 + 1 +
1

2!
+ · · ·+ 1

n!

)
n! <

e

n+ 1
.

Solution. (a) A direct application of Taylor’s Expansion Theorem.

(b) It follows from (a) by noting ea ≤ e for a ∈ (0, 1]. If e = p/q for some p, q ∈ N, the
inequality gives

0 <
p

q
n!−

(
1 +

1

2
+ · · · 1

n!

)
n! <

e

n+ 1
< 1 .

The term (
1 +

1

2
+ · · · 1

n!

)
n!

is a natural number. When n = q the term
p

q
n! is also a natural number, so is their

difference. But there is no natural number lying between 0 and 1 ! BTW, it is much more
difficult to show e is a transcendental number. Google for it.
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7. Show that the series
∞∑
j=0

xj

j!

is not uniformly convergent on R (although it is uniformly convergent in every [−M,M ]).
Solution. Were it uniformly convergent on (−∞,∞), for ε > 0, there is some n0 such
that ∣∣∣∣∣∣

n∑
j=0

xj

j!
−

m∑
j=0

xj

j!

∣∣∣∣∣∣ < ε, ∀n,m ≥ n0 ,∀x ∈ (−∞,∞).

Taking n = n0 + 1 and m = n0, we have∣∣∣∣xnn!

∣∣∣∣ < ε , x ∈ (−∞,∞) ,

which is absurd. Hence the convergence cannot be uniform.

8. (a) Show that

log(1 + x) = x− x2

2
+
x3

3
− · · ·+ (−1)n−1

xn

n
+

∫ x

0

(−t)n

1 + t
dt .

Suggestion: Think about

1

1 + x
= 1− x+ x2 − x3 + · · ·+ (−x)n

1 + x
.

(b) Show that ∣∣∣∣log(1 + x)−
(
x− x2

2
+
x3

3
− · · ·+ (−1)n−1

xn

n

)∣∣∣∣ ≤ xn+1

n+ 1
.

Solution. (a) follows from a direct integration. The second inequality follows from the
first inequality after noting ∣∣∣∣∫ x

0

(−t)n

1 + t
dt

∣∣∣∣ ≤ ∫ x

0
tndt =

xn+1

n+ 1
.

9. This exercise suggests an alternative way to define the logarithmic and exponential func-
tions. Define nog : (0,∞)→ R by

nog(x) =

∫ x

1

1

t
dt.

(a) nog(x) is strictly increasing, concave, and tends to ∞ and −∞ as x → ∞ and 0
respectively.

(b) nog(xy) = nog(x) + nog(y).

(c) Define e(x) to be the inverse function of nog. Show that it coincides with E(x).

Note: f is concave means −f is convex. You cannot assume log x has been defined.

Solution.
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(a) By fundamental theorem of calculus, nog is differentiable and (nog x)′ = 1
x > 0.

Hence it is strictly increasing. Moreover, (nog x)′′ = − 1
x2 < 0 hence it is strictly

concave. Next we observe ∀ x ≥ 2, ∃ nx ∈ R s.t. nx − 1 ≤ x < nx. Then

nog x ≥ nog(nx − 1) =

∫ nx−1

1

1

t

=

nx−1∑
k=2

∫ k

k−1

1

t
≥

nx−1∑
k=2

∫ k

k−1

1

k

=

nx−1∑
k=2

1

k
.

Letting x→∞, nx →∞, hence limx→∞ nog x ≥
∑∞

k=2
1
k =∞.

Next, by the change of variables s = 1/t,

nog x =

∫ x

1

dt

t
=

∫ 1

1/x

ds

s
→ −∞ ,

as x→ 0.

(b)

nog xy =

∫ xy

1

1

t
dt

=

∫ x

1

1

t
dt+

∫ xy

x

1

t
dt

=

∫ x

1

1

t
dt+

∫ xy

x

1

xt
d(xt) ,

since x > 0. It is equal to∫ x

1

1

t
dt+

∫ y

1

1

u
du = nog x+ nog y .

(c) From (a), nog is strictly increasing hence one-to-one, its inverse function e(x) is well
defined.

e′(x) =
1

(nog)′(e(x))
=

1

1/e(x)
= e(x) ∀ x ∈ R ,

and e(0) = 1 since nog (1) = 0. By uniqueness, e(x) coincides with E(x).

Note. This approach has a drawback, namely, it is not feasible for generalization.

10. Show that there is a unique solution c(x), x ∈ R, to the problem

f ′′ = f, f(0) = 1, f ′(0) = 0.

(a) Letting s(x) ≡ c′(x), show that s satisfies the same equation as c but now s(0) =
0, s′(0) = 1.

(b) Establish the identities, for all x,

c2(x)− s2(x) = 1,

and
c(x+ y) = c(x)c(y) + s(x)s(y).
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(c) Express c and s as linear combinations of ex and e−x. ( c and s are called the hy-
perbolic cosine and sine functions respectively. The standard notations are coshx
and sinhx. Similarly one can define other hyperbolic trigonometric functions such as
tanhx and cothx.)

Solution. They are parallel to the case of the exponential function E. We only consider
the uniqueness issue. As in the case for the exponential function, it suffices to show if both
g satisfy g′′ = g , g(x0) = g′(x0) = 0 at some x0, then g ≡ 0. Well, it is a direct check that
g satisfies the integral equation

g(x) =

∫ x

x0

∫ t

x0

g(z)dz .

We claim g ≡ 0 on [x0− 1, x0 + 1]. For, let M = |g(x1)| be the max of |g| on this interval.
We have

M = |g(x1)| ≤
∣∣∣∣∫ x

x0

∫ t

x0

g(z)dz

∣∣∣∣ ≤M ∫ x

x0

∫ t

x0

dz = M
(x− x0)2

2
≤ M

2
,

which forces M = 0 .

Remark. The functions c and s are actually the hyperbolic cosine and sine functions given
respectively by

coshx =
ex + e−x

2
, sinhx =

ex − e−x

2
.


